高中数学教学工作计划模板锦集六篇
时间流逝得如此之快,我们的工作又进入新的阶段,为了在工作中有更好的成长,是时候开始写计划了。拟起计划来就毫无头绪?下面是小编精心整理的高中数学教学工作计划6篇,希望对大家有所帮助。
高中数学教学工作计划 篇1一、教学目标
1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
二.学生基本情况
高二文科生学习数学的气氛、基础参差不齐。由于学生对学过的知识内容不及时复习,致使对高二的数学学习有很大的影响,高一数学成绩充分反映没有尖子生,成绩特差的学生也有不少,有一批思维相当灵活的学生,但学习不够刻苦,学习成绩一般,期望通过好好的引导,进一步培养他们的学习兴趣,从而带动全班同学的学习热情,提高学生的数学成绩。
三、教法分析:
1.选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的。
2.通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。
3.在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。
四、教学措施:
1、认真落实,搞好集体备课。根据自已承担的任务,提前一周进行单元式的备课,并出好本周的单页练习。集体备课时,由一名老师作主要发言人,对本周的教材内容作分析,然后大家研究讨论其中的重点、难点、教学方法等。
2、详细计划,保证练习质量。教学中用配备资料《三维设计》,要求学生按教学进度完成相应的习题,提前向学生指出不做的题,以免影响学生的时间。
3、抓好第二课堂,稳定数学优生,培养数学能力兴趣。教学进度要加快,教学难度要有所降低,培育好本班的优生,注意激发学生的学习兴趣,随时注意学生学习方法的指导。
4、加强辅导工作。对已经出现数学学习困难的学生,下班辅导十分重要。教师教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,既要注意照顾好班上优生层,更不能忽视班上的困难学生。
高中数学教学工作计划 篇2一、指导思想
高三数学教学要以《全日制普通高级中学教科书》、普通高等学校招生全国统一考试《北京卷考试说明》为依据,以学生的发展为本,全面复习并落实基础知识、基本技能、基本数学思想和方法,为学生进一步学习打下坚实的基础。要坚持以人为本,强化质量的意识,务实规范求创新,科学合作求发展。
二、教学建议
1、认真学习《考试说明》,研究高考试题,把握高考新动向,有的放矢,提高复习课的效率。
《考试说明》是命题的依据,备考的依据。高考试题是《考试说明》的具体体现。因此要认真研究近年来的考试试题,从而加深对《考试说明》的理解,及时把握高考新动向,理解高考对教学的导向,以利于我们准确地把握教学的重、难点,有针对性地选配例题,优化教学设计,提高我们的复习质量。
注意高考的导向:注重能力考查,反对“题海战术”。《考试说明》中对分析问题和解决问题的能力要求是:能阅读、理解对问题进行陈述的材料;能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中的数学问题,并能用数学语言正确地加以表述;能选择有效的方法和手段对新颖的信息、情境和设问进行独立的思考与探究,使问题得到解决。高考试题无论是小题还是大题,都从不同的角度,不同的层次体现出这种能力的要求和对教学的导向。这就要求我们在日常教学的每一个环节都要有目的地关注学生能力培养,真正提高学生的数学素养。
2、充分调动学生学习积极性,增强学生学习的自信心。
尊重学生的身心发展规律,做好高三复习的动员工作,调动学生学习积极性,因材施教,帮助学生树立学习的自信性。
3、注重学法指导,提高学生学习效率。
教师要针对学生的具体情况,进行复习的学法指导,使学生养成良好的学习习惯,提高复习的效率。如:要求学生建立错题本,让学生养成反思的习惯;养成学生善于结合图形直观思维的习惯;养成学生表述规范,按照解答题的必要步骤和书写格式答题的习惯等。
4、高度重视基础知识、基本技能和基本方法的复习。
要重视基础知识、基本技能和基本方法的落实,守住底线,这是复习的基本要求。为此教师要了解学生,准确定位。精选、精编例题、习题,强调基础性、典型性,注意参考教材内容和考试说明的范围和要求,做到不偏、不漏、不怪,进行有针对性的'训练。
5、教学中要重视思维过程的展现,注重学生能力的发展。
在教学中我们发现学生不太喜欢分析问题,被动的等待老师的答案的现象很普遍,因此,教学中教师要深入研究,挖掘知识背后的智力因素,创设环境,给学生思考、交流的机会,充分发挥学生的主体作用,使学生在比较、辨析、质疑的过程中认识知识的内在联系,形成分析问题、解决问题的能力。养成他们动口、动脑、动手的习惯。
6、高中的“重点知识”在复习中要保持较大的比重和必要的深度。
近年来数学试题的突出特点:坚持重点内容重点考查,使高考保持一定的稳定性;在知识网络交汇点处命制试题。因此在函数、不等式、数列、立体几何、三角函数、解析几何、概率等重点内容的复习中,要注意轻重缓急,注重学科的内在联系和知识的综合。
7、重视“通性、通法”的总结和落实。
教师要帮助学生梳理各部分知识中的通性、通法,把复习的重点放在教材中典型例题、习题上;放在体现通性、通法的例题、习题上;放在各部分知识网络之间的内在联系上。通过题目说通法,而不是死记硬背。进而使学生形成一些最基本的数学意识,掌握一些最基本的数学方法,不断地提 ……此处隐藏3492个字…….
(3)集合中的元素与集合的关系:
a是集合A中的元素,称a属于集合A,记作a∈A;
a不是集合A中的元素,称a不属于集合A,记作aA.
例:设B={1,2,3},则1∈B,4
2. 集合中的元素具备的性质 B.
(1)确定性:集合中的元素是确定的,即给定一个集合,任何一个对象是否属于这个集合的元素也就确定了.如上例,给出集合B,4不是集合的元素是可以确定的.
(2)互异性:集合中的元素是互异的,即集合中的元素是没有重复的.
例:若集合A={a,b},则a与b是不同的两个元素.
(3)无序性:集合中的元素无顺序.
例:集合{1,2}与集合{2,1}表示同一集合.
3. 常用的数集及其记法
全体非负整数的集合简称非负整数集(或自然数集),记作N.
非负整数集内排除0的集合简称正整数集,记作N*或N+;
全体整数的集合简称整数集,记作Z;
全体有理数的集合简称有理数集,记作Q;
全体实数的集合简称实数集,记作R.
4. 集合的表示方法
[问 题]
如何表示方程x2-3x+2=0的所有解?
(1)列举法
列举法是把集合中的元素一一列举出来的方法.
例:x2-3x+2=0的解集可表示为{1,2}.
(2)描述法
描述法是用确定的条件表示某些对象是否属于这个集合的方法.
例:①x2-3x+2=0的解集可表示为{x|x2-3x+2=0}.
②不等式x-3>2的解集可表示为{x|x-3>2}.
③Venn图法
例:x2-3x+2=0的解集可以表示为(1,2).
5. 集合的分类
(1)有限集:含有有限个元素的集合.例如,A={1,2}.
(2)无限集:含有无限个元素的集合.例如,N.
(3)空集:不含任何元素的集合,记作.例如,{x|x2+1=0,x∈R}=.
注:对于无限集,不宜采用列举法.
三、解释应用
[例 题]
1. 用适当的方法表示下列集合.
(1)由1,2,3这三个数字抽出一部分或全部数字(没有重复)所组成的一切自然数.
(2)平面内到一个定点O的距离等于定长l(l>0)的所有点P.
(3)在平面a内,线段AB的垂直平分线.
(4)不等式2x-8<2的解集.
2. 用不同的方法表示下列集合.
(1){2,4,6,8}.
(2){x|x2+x-1=0}.
(3){x∈N|3
3. 已知A={x∈N|66-x∈N}.试用列举法表示集合A.
(A={0,3,5})
4. 用描述法表示在平面直角坐标中第一象限内的点的坐标的集合.
[练 习]
1. 用适当的方法表示下列集合.
(1)构成英语单词mathematics(数字)的全体字母.
(2)在自然集内,小于1000的奇数构成的集合.
(3)矩形构成的集合.
2. 用描述法表示下列集合.
(1){3,9,27,81,…}.
(2)
四、拓展延伸
把下列集合“翻译”成数学文字语言来叙述.
(1){(x,y)|y=x2+1,x∈R}.
(2){y|y=x2+1,x∈R}.
(3){(x,y)|y=x2+1,x∈R}.
(4){x|y=x2+1,y∈N*}.
高中数学教学工作计划 篇6一、学生基本情况
高二(1)班共有56人,高二(2)班共有55人,两个班学习数学的气氛较浓,但由于学生对学过的知识内容不及时复习,致使对高二的数学学习有很大的影响,数学成绩充分反映尖子生不多,成绩特差的学生也有,有一批思维相当灵活的学生,但学习不够刻苦,学习成绩一般,但有较大的潜力,以后好好的引导,进一步培养他们的学习兴趣,从而带动全班同学的学习热情,提高学生的数学成绩。
二、教学要求
(一)知识要求
1.理解正余弦定理,会解简单的三角形问题。
2.掌握数列定义,通项公式,前N项和公式的推导及运用。
3.掌握简单的线性规划问题。
4.掌握圆锥曲线的标准方程及其几何性质,会根据所给的条件化圆锥曲线。
5.理解复数及其有关的概念。掌握复数的代数、几何、三角表示及其转换。
(二)能力要求
1、培养学生的观察力和数学记忆力。
2、培养学生数学化的能力。
3、培养学生的思维能力。
4、培养学生的想象能力。
三、教材简要分析
1、利用正余弦定理,会解简单的三角形问题是重点。必须打下扎实的基础。
2、数列定义,通项公式,前N项和公式的推导及运用是考试的重点
3、掌握圆锥曲线的标准方程及其几何性质,会根据所给的条件化圆锥曲线。
4.复数的几何意义有益于培养学生的数形结合的能力。
4、排列组合二项式定理高考分数不多,但是也是难点。由于实际运用相当广泛,高考要求提高,不容忽视。
四、重点与难点
1、正余弦定理,会解简单的三角形问题是重点
2、数列定义,通项公式,前N项和公式的推导及运用是考试的重点
3、圆锥曲线的标准方程及其几何性质和运用是重点也是难点。
4、排列组合综合问题及如何区分排列与组合是难点。
5、轨迹问题是教学的重点与难点.
五、教学措施
1、教学中要传授知识与培育能力相结合,充分调动学生学习的主动性,培育学生的概括能力,是学生掌握数学基本方法、基本技能。
2、以五大数学思想为主线,有目的、有计划、有重点,避免面面俱到,减轻学生的学习负担。
3、加强教育教学研究,坚持学生主体性原则,坚持循序渐进原则,坚持启发性原则。研究并采用以五段发现式教学模式为主的教学方法,全面提高教学质量。
4、积极参加与组织集体备课,共同研究,努力提高授课质量
5、坚持向同行听课,取人所长,补己之短。相互研究,共同进步。
6、坚持学法研讨,加强个别辅导(差生与优生),提高全体学生的整体数学水平,培育尖子学生。
六、课时安排
1、正余弦定理6课时
2、数列定义,通项公式,前N项和公式的推导及运用12课时
3、一元二次不等式及简单的线性规划6课时
3、不等式5课时
4、圆锥曲线的性质与方程40课时
文档为doc格式